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Abstract 

This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in 
slide journal bearing with planar linear gap. Discussed case of the solution to the Reynolds equation for the unsteady 
laminar Newtonian flow of lubricating factor allows initial estimation of hydrodynamic pressure distribution and its 
capacity as a basic operational parameter of the slide bearing. Unsteady axial velocity perturbation on the race 
surface and slide has influence on the hydrodynamic pressure distribution of the capacity of the lubricated gap. 
Pressure changes in the bearing are seasonal and equal to the lasting period of velocity perturbation. The level of 
changes and its nature depends on the kind of perturbation. This solution example apply to isothermal bearing model 
with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence 
on pressure. It shows a preliminary analysis change of capacity forces in the bearing by laminar, unsteady lubrication 
caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as 
an example of modeling the bearing friction node operations in reciprocating movement during exploitation of 
engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. 
Results are presented in the dimensionless hydrodynamic pressure and capacity force diagrams. 
Keywords: journal plane bearing, lubrication, unsteady laminar oil flow, pressure distribution, capacity forces 
 
1. Introduction 

Presented subject matter apply to unsteady laminar flows [1, 4, 5] where modified Reynolds 
number Re* is smaller or equal to 2. This flows are also determine by Taylor number Ty which is 
smaller or equal to 41.1. Laminar and unsteady flow of lubricant factor may occur during periodic 
or randomness non-periodic load perturbation. This kind of perturbation can occur during transient 
states of machines, but mostly during starts and stops. Presented work analyse change of oil 
lubricating flow perturbation in longitudinal direction on the slide plane and on the radial race of 
slide bearing. Plane bearing can be used as a work model of bearing friction node in kinematic pair 
in translational motion. As an example the crosshead bearing of slow-speed engine. Reynolds 
equation system for unsteady, laminar Newtonian oil flow in the cylinder radial bearing is 
presented in work [1] and in the plane slide bearing in work [3]. Stationary model of plane journal 
bearing lubrication is presented in work [2]. Velocity flow perturbations of lubricating oil on the 
slide can be caused by longitudinal vibrations during of reciprocating slide motion. Axial 
vibrations overlay on slide motion and this causes oil velocity perturbation on the slide bearing 
surface. 

Values of the perturbation are proportional to the longitudinal amplitude of perturbation and to 
forced frequency. Longitudinal vibration in the slide bearing elements can be caused by torsional 
vibration of the crankshaft. Oil flow velocity perturbations in the longitudinal direction on the 
bearing race can be caused by axial vibration of the race coming from vertical vibration of the 
engine. Isothermal bearing model can act as work model of bearing friction node by steady-state 
conditions of thermal load. 
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2. Modified Reynolds Equation 
Lubricating gap is characterize by following geometric parameters: maximal gap height ho, 

minimal gap height he, gap length L and gap width b (Fig. 1). In presented model the following 
assumption were made: lubricating gap dimensions along it’s width of mating surfaces remain 
identical. Lubricating gap height after gap length was described in cartesian co-ordinate system by 
the following dimensionless form: 

 
 � 	 � 	 1x111 xh �� � �� 1x1    for   0 ::  (1) 
 

 

 
Fig. 1. Geometry schema of the slide journal plate bearing gap 

 
Dimensionless values [2, 3] that characterize lubricating gap are: length coordinate x1, gap 

height coordinate h1 and gap convergence coefficient ^: 
 

 
e

0
h
h; ��

i

1
e

1 L
xx;

h
hh ��  (2) 

 
In considered model we assume small unsteady disturbances and in order to maintain the 

laminar flow, oil velocity Vi
* and pressure p1

* are total of dependent quantities V~ ;  and 
independent quantities V  from time [3, 5] according to equation (3). 
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Unsteady components of dimensionless oil velocity and pressure we [4] in following form of 

infinite series: 
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{0 - angular velocity perturbations in unsteady flow, 
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j - imaginary unit j = 1� . 
Reynolds equation describing dimensionless total pressure p1

* in the lubricating gap of a plane 
journal bearing [3] by unsteady, laminar, isothermal, Newtonian flow. Together with longitudinal 
velocity perturbations V10 on the race surface and V1h on the slide. Velocity perturbation V30 along 
earing width on the race and V3h on the slide also occur in this model, as follows: 
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ension form Vx, Vy, Vz and in dimensionless form V1, 
2, V3 are described as follows: 
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less clearanc 310�:B: ), 

1 - relative bearing breadth: 

where: 

U - linear velocity of slide bearing, 
e of bearing ( 410�| - relative dimension

B - bearing breadth, 
L
 

 1
h bB � � . (7) 

to the Barrus formula 
[5] and presented [1] in the dimension form � and in dimensionless form �1: 

,                    Le

L L
 

Oil dynamic viscosity � in dependence on pressure was taken according 

� 	 � 	exp ,     p0 0 1
0

,        ap p pe e� � 11 1 1 1
1

�� C � ��  (8)  

where: 

�o - oil dynamic viscosity by atmospheric pressure p = pa C0, 
� - piezocoefficient taking into account viscosity changes in dependence on pressure. 
 

 ,p1  
me t1 and for remaining coordinates y1 and z1 according to the following designation: 
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Additional assumptions were made [2]: the dimensionless value for density $1, pressure
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Density, pressure and time values with zero index are equivalent to basic s
 characterize dynamic viscosity in dependence on pressure. Pressure p0 , Rey
odified Reynolds number Re* has the following form [2]: 

izes. Constant value 
K nolds number Re, 
m

 *0
0       Re ,          Re Re.         e0

2
0

Up ,  U h
L

1 � (10) 

 

unt as a propagation period 
f axial velocity perturbation of lubricating oil. In case where oil velocity perturbations are caused 

ine then the number n in equation (5) define multiplication of 
per

Equation solution (3) for infinity breadth bearing with assumption that velocity perturbation 
does not depend on coordinate x1 can be present [3] in total dimensionless hydrodynamic pressure 
p1

*. 

B
B 1

� � �  

Sums of a series <
=

�1k
kA  and <

=

�1k
kB  in Reynolds equation (5) were defined in works [1, 3]. 

In the further numerical analysis relation time was taken into acco
o
by forced vibrations of eng

turbation frequency {0 to angular velocity of engine crankshaft {. 
 
3. Hydrodynamic pressure 

 

� 	 � 	 � 	
 

� 	
� 	 � 	 � 	� 	 <

=

�?
@
A

(
)
*



�

�
�
�

�
����

�
����

��
�

1
1

1
111110

10

*
1

2 211
1

1lnln1
1

Re
1

3
k

kh Ah
h

xhxVV
Kp

nK ��
�

��
�

 
The p10 value is a pr

<<
=

�

�=

�

���
 

!
""
#

$ �
���

�
��

�
��

1
2

1

1
110

10

1
2

1

1
110

10

10
11

*
1 1

1
Re

41 k
kh

k
khK A

h
hVV

Kp
nxBVV

Kp
ppxp ���

�
 (11) 

essure value in the disccused lubricating gap by the steady flow with the 
onstant lubricating oil dynamic viscosity. On the other hand p1K value is a stationary pressure 

nd for discussed form of lubricating gap it was 
entioned in work [2]: 

 

c
value for viscosity, in dependence on pressure a
m
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K

 lubricating gap convergence coefficient ^ [2]. Optimum 
gap

Perturbation pressure 1
~p  in the unsteady part of the flow can be presented as a difference of 

total pressure p1
* and stationary pressure p1K. 

On the basis of presented dependences for isothermal bearing model with infinity width, the 
calculations of hydrodynamic pressure distribution in the lubricating gap were made. In the 
example calculations the following assumption were made: oil with constant density and value of 
the expression n�1Re* = 12, which approximately comply to longitudinal velocity perturbation 
function in the engine crosshead bearing after the first frequency force from two-stroke, six 
cylinder engine crankshaft torsional vibration. Hydrodynamic pressure distribution and other 
pressure parameters are in dependence on

 convergence ^opt = 1+ 2  comply to maximal hydrodynamic pressure. Pressure in the optional 
point of lubricating gap changes due the perturbation time and its distribution along the gap length 
reach the maximal and minimum values. 

On the Fig. 2 example of the hydrodynamic total pressure distribution along the gap length for 
bearing with the optimal convergence ^opt and for the convergence ^ = 1,4 marked with numbers 
1 and 2 by the constant viscosity (K = 0) in dependence on pressure (K = 0.25) marked with thin 
and thick lines. Maximal pressure distribution were marked with symbols a and the minimal 
pressure distribution were marked with b. Pressure quantities by stationary flow were marked with 

 

. 

248



 
Capacity Forces in Slide Journal Plane Bearing by Laminar Unsteady Lubrication 

broken line. Unsteady flow on the Fig. 2 is caused by longitudinal velocity perturbation only on 
the bearing race V10 = 0.05. In the case where oil dynamic viscosity depends on pressure then 
pressure perturbations are higher than in the case where oil has constant viscosity. 
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Fig. 2. Total maximal (a) and minimal (b) pressure distributions p1

* in direction x1for �: 1) � = �opt ; 2) � = 1.4 by 
velocity perturbations: V10 = 0.05 
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F . 3. Pressure distributions p1* in place x1 = 0.5 in the time t1 by velocity perturbations:1)V10 = 0.05; V1h = 0; 
2) V10 = 0.05; V1h = 0.025;3) V10 = 0.05; V1h = 0.05;4) V10 = 0.05; V1h = -0.05 

 
Pressure perturbation quantity depends on lubricating oil convergence ^ and is the maximum 

for optimal convergence. It apply also to stationary pressure increase in the lubricating gap. 
Further analysis of pressure distribution were made for gap with optima convergence (^ = opt). 

Total pressure distribution along the bearing gap and perturbation pressure distribution in the 
time function in the optional point on the race surface were analyzed. Numerical calculation results 
were presented by following longitudinal velocity perturbations: 1) V10 = 0.05, V1h = 0; 
2) V10 = 0.05, V1h = 0.025; 3) V10 = 0.05, V1h = 0.05; 4) V10 = 0.05, V1h = -0.05. Unsteady 
pressure is changing at the time of velocity perturbation and its course is a function of time and its 
location along the bearing length. It is the temporary function of a period of  velocity perturbation. 
Total pressure course p1* in the point located in the half way of bearing length x1 = 0,5 on the 
surface of the race in dimensionless time function is presented on the Fig. 3 for fourth different 
velocity perturbation. Steady pressure is marked with the misfiring line. When the velocity 
perturbation of oil on the race is harmonious with the slide velocity, the perturbation pressure 
increases. In the opposite situation it decreases and the drop is much higher than the rise. It lasts 
shorter than the half perturbation period. The opposite case is when velocity perturbation ta
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place on the slide. This case has not been presented on the figure. The periods of drop and rise of 
pre

Hydrodynamic capacity force in the bearing comes from the hydrodynamic pressure integral on 
earing surface slide. In dimensionless form: 

ssure are asymmetric in the case of different levels of velocity perturbation (Fig. 3). The level 
of velocity perturbation is higher for both options when the viscosity depends on the pressure. 

. Capacity forces 4

b
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Capacity load changes during the time of velocity perturbation. Capacity load change KW1

w

W0 - characteristic value of capacity force 
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. 5. The capacity forces 1W~  of slide journal bearing in the time t1 by velocity perturbations: 1) V10 = 0.05; 

V1h = 0; 2) V10 = 0.05; V1h = 0.025;3) V10 = 0.05; V1h = 0.05;4) V10 = 0.05; V1h = -0.05 

In case of lubricating oil flow with constant viscosity indepen
apacity load by stationary flow W10 is determined [2] by equat
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Fig. 5 presents hydrodynamic capacity change of plain bearing during the viscosity 

per

rbation variant. 

turbation time for both considered perturbation alternatives. Capacity load change is similar to 
total pressure change resulting from Fig. 3. Capacity force decrease caused by velocity 
perturbations is greater than capacity force increase and it depends on pertu

Pressure perturbation and capacity load drop and is caused by appearance of counter flow 
velocity to the direction of stationary flow. In case of oil dynamic viscosity depends on pressure, 
capacity load by stationary condition is greater than by constant viscosity. 
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In that case this lubricating oil quality causes that capacity load decrease as a result of velocity 
perturbation gives greater capacity load margin in both velocity perturbation cases. Capacity load 
position on the bearing lengthwise can be specified with coordinate - coordinate of centre 
elementary hydrodynamic pressure surface forces. 
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Fig. 6.Coordinate x1W situated city force *

1W  in the time t1 by perturbations:1) V10 = 0.05; V1h = 0; 2) V10 = 0.05; 
V1h = 0.025;3) V10 = 0.05; V1h = 0.05;4) V10 = 0.05; V1h = -0.05 
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Fig. 6. Change of coordinate �x1W situated capacity force *

1W  in the time t1 by perturbations:1) V10=0,05; V1h=0; 
2) V10=0,05; V1h=0,025;3) V10=0,05; V1h=0,05;4) V10=0,05; V1h=-0,05 

 
This coordinate changes the position during velocity perturbation of oil flow. Capacity load 

diagrams for both considered velocity perturbation are presented on Fig. 6 and Fig. 7. Position 
change of capacity force is symmetrical in time, that is it crosses through stationary position by 
t1 = 0.5 in spite of that capacity force is not achieving by stationary flow (Fig. 5). Capac
s
decrease accordi

rdinate changes in perturbation flow is greater in case when oil dynamic viscosity depends on 
pressure. Position coordinate for stationary flow is marked with broken line on the Fig. 6. 
 
4. Conclusions 

Discussed case of the solution to the Reynolds equation for the unsteady laminar Newtonian 
flow of lubricating factor allows initial estimation of hydrodynamic pressure distribution and its 
capacity as a basic operational parameter slide bearing. Unsteady axial velocity perturbation on the 
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race surface and slide has influence on the hydrodynamic pressure distribution of the capacity of 
the lubricated gap. Pressure changes in the bearing are seasonal and equal to the lasting period of 
velocity perturbation. The level of changes and its nature depends on the kind of perturbation. The 
author bears in mind of the number of simplifying assumptions used in the presented model of 
bearing node and applying to the acceptance of Newtonian oil as well as examining isothermal 
model of bearing. The presented analytical example applies to the bearing of infinite length, 
owever, the conclusions can be useful for the estimation of the pressure distribution and force 

, unsteady lubrication of slide nodes of the finished length. Presented results can be 

[1] steady lubrication of slide journal bearing in magnetic field with 
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echnical University Press, ZN Budownictwo Okr�towe Nr 65, 
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University Press, Szczecin 1993. 
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h
with laminar
used as the comparative values in the case of numerical modeling of laminar, unsteady flows of 
liquids non-Newtonian in lubricating gaps slide journal bearings. 
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